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Abstract

We discuss an implementation of the Heath-Jarrow-Morton model for pricing
zero-coupon bonds and interest rate options, including caps and floors, by Monte
Carlo simulation. Principal component analysis is used to estimate volatilities of

the model from historical time series data for forward rates. Models with as many
as 10 factors are supported.
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Chapter 1

Modeling Forward Rates

The Heath-Jarrow-Morton (HJM) model evolves the whole yield curve forward in
time. This can be done in several different was; for example, by modeling the
zero-coupon bond yield curve or by modeling the forward rate curve. The HJM
model represents the yield curve in terms of forward rates because the no-arbitrage
condition has a particularly simple form in this approach.

1.1 Forward Rates

Fix a time horizon T ∗ (say, 50 years) and assume all bonds considered mature at or
before T ∗. Let Z(t, T ) denote the price at time t of a zero-coupon bond maturing
at time T and having face value 1. Recall that the forward rate f(t, T ) represents
the instantaneous continuously compounded rate contracted at time t for riskless
borrowing or lending at time T ≥ t.

To relate Z(t, T ) and f(t, T ), let δ be a small positive number and consider a
portfolio set up at time t with a short position of size 1 in T -maturity zero coupon
bonds, which generates income Z(t, T ), and a long position of size Z(t,T )

Z(t,T+δ) in
(T + δ)-maturity zero coupon bonds, which costs Z(t, T ). The net cost of setting
up this portfolio at time t is zero. At time T , holding this portfolio requires that we
pay 1 to cover the short position in T -maturity zero coupon bonds. At time T + δ,
we receive Z(t,T )

Z(t,T+δ) from the long position in the (T + δ)-maturity zero coupon

bonds. That is, we have invested 1 at time T and received Z(t,T )
Z(t,T+δ) at time T + δ.

The yield of this investment is

1

δ
log

Z(t, T )

Z(t, T + δ)
= − logZ(t, T + δ)− Z(t, T )

δ
. (1.1)

This is the continuously compounded rate of interest that, applied to 1 at time T
will return Z(t,T )

Z(t,T+δ) at time T + δ.
Based on the above observations, it is natural to define the forward rate at time
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t for investing at time T as

f(t, T ) = − lim
δ↓0

logZ(t, T + δ)− Z(t, T )

δ
= − ∂

∂T
logZ(t, T ). (1.2)

This is the limit of the yield in (1.1) as δ ↓ 0 and can thus be regarded as the
instantaneous interest rate at time T that can be locked in at the earlier time t.

If we know f(t, T ) for all values 0 ≤ t ≤ T ≤ T ∗, we can recover Z(t, T ) by
the formula

Z(t, T ) = e−
∫ T
t f(t,v)dv, 0 ≤ t ≤ T ≤ T ∗. (1.3)

Finally, since the instantaneous rate we can lock in at time t for investing at
time t is the short rate, r(t), we have

r(t) = f(t, t). (1.4)

1.2 Dynamics of Forward Rates and Bond Prices

In the HJM model, the evolution of the forward rate curve is modeled by a stochas-
tic differential equation of the form

df(t, T ) = µ(t, T )dt+ σ(t, T )dW (t), 0 ≤ t ≤ T, (1.5)

where df(t, T ) denotes the differential with respect to t with T held constant. In
general, W is a standard d-dimensional Brownian motion (d is the number of fac-
tors) but to simplify the presentation we initially take d = 1.

From (1.5), we can work out the dynamics of the bond prices given by (1.3).
Using the Leibniz integral rule, we get

d
(
−
∫ T

t
f(t, v)dv

)
= f(t, t)dt−

∫ T

t
df(t, v)dv.

This together with (1.4) gives

d
(
−
∫ T

t
f(t, v)dv

)
= r(t)dt−

∫ T

t
[µ(t, v)dt+ σ(t, v)dW (t)]dv.

Let

µ∗(t, T ) =

∫ T

t
µ(t, v)dv (1.6)

and

σ∗(t, T ) =

∫ T

t
σ(t, v)dv (1.7)

Then interchanging the order of integration in the expression above yields

d
(
−
∫ T

t
f(t, v)dv

)
= r(t)dt− µ∗(t, T )dt− σ∗(t, T )dW (t). (1.8)
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A simple application of Itó’s formula then gives us

dZ(t, T ) = Z(t, T )
[
r(t)− µ∗(t, T ) +

1

2
(σ∗(t, T ))2

]
dt

− σ∗(t, T )Z(t, T )dW (t). (1.9)

1.3 The No-Arbitrage Condition

The model we built in the last section has a zero-coupon bond with maturity T for
every T with 0 ≤ T ≤ T ∗. To be sure there is no chance of arbitrage when trading
in these bonds, we need to find a measure P̃ under which discounted zero-coupon
bond prices are martingales. Let the discount factors be denoted by D(t) so that

D(t) = e−
∫ t
0 r(u)du.

Since dD(t) = −r(t)D(t)dt,

d(D(t)Z(t, T ))

= −r(t)D(t)Z(t, T )dt+D(t)dZ(t, T )

= D(t)Z(t, T )
[(
− µ∗(t, T ) +

1

2
(σ∗(t, T ))2

)
dt− σ∗(t, T )dW (t)

]
(1.10)

If we can write the term in square brackets as

−σ∗(t, T )[Θ(t)dt+ dW (t)],

then we can use Girsanov’s Theorem to change to a measure P̃ under which

W̃ (t) =

∫ t

0
Θ(u)du+W (t) (1.11)

is a standard Brownian motion. We can then rewrite (1.10) as

d(D(t)Z(t, T )) = −D(t)Z(t, T )σ∗(t, T ))dW̃ (t), (1.12)

from which it would follow that {D(t)Z(t, T )}t is a martingale under P̃. To
achieve this goal, we must solve the equation(

− µ∗(t, T ) +
1

2
(σ∗(t, T ))2

)
dt− σ∗(t, T )dW (t)

= −σ∗(t, T )[Θ(t)dt+ dW (t)]

for Θ(t). Equivalently, we must find a process Θ(t) satisfying

−µ∗(t, T ) +
1

2
(σ∗(t, T ))2 = −σ∗(t, T )Θ(t) (1.13)
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for all 0 ≤ t ≤ T ≤ T ∗. Note that there are infinitely many equations, one for
each T ≤ T ∗; that is, there is one market price of risk equation for each maturity.
However, there is only one market price of risk processes Θ(t). In the general case,
there are d market price of risk processes Θ1(t), . . . ,Θd(t), one for each source of
uncertainty.

From (1.6) and (1.7), it follows that

∂

∂T
µ∗(t, T ) = µ(t, T ),

∂

∂T
σ∗(t, T ) = σ(t, T ).

Differentiating (1.13) with respect T , we get

−µ(t, T ) + σ∗(t, T )σ(t, T ) = −σ(t, T )Θ(t)

or

µ(t, T ) = σ(t, T )[σ∗(t, T ) + Θ(t)]. (1.14)

As long as σ(t, T ) is nonzero, we can solve (1.14):

Θ(t) =
µ(t, T )

σ(t, T )
− σ∗(t, T ), 0 ≤ t ≤ T. (1.15)

1.4 HJM Under the Risk-Free Measure

If we assume the model (1.5) satisfies the no-arbitrage condition (1.14), then it can
be rewritten as

df(t, T ) = µ(t, T )dt+ σ(t, T )dW (t)

= σ(t, T )σ∗(t, T )dt+ σ(t, T )[Θ(t)dt+ dW (t)]

= σ(t, T )σ∗(t, T )dt+ σ(t, T )dW̃ (t).

In other words, to assure that there is no arbitrage, we need the drift of the forward
rate under the risk-free measure to be σ(t, T )σ∗(t, T ). In this case we can also
rewrite equation (1.10) as

d(D(t)Z(t, T )) = σ∗(t, T )D(t)Z(t, T )[Θ(t)dt+ dW (t)]

= −σ∗(t, T )D(t)Z(t, T )dW̃ (t)

and so the dynamics of a zero-coupon bond becomes

dZ(t, T ) = d
( 1

D(t)
D(t)Z(t, T )

)
=

r(t)

D(t)
D(t)Z(t, T )dt− σ∗(t, T )

1

D(t)
D(t)Z(t, T )dW̃ (t)

= r(t)Z(t, T )dt− σ∗(t, T )Z(t, T )dW̃ (t).
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The derivation of these results for the general d-dimensional case is a simple
generalization of what we have done above so we will state them without proofs.
The SDE for the d-factor model becomes

df(t, T ) =
( d∑
i=1

σi(t, T )σ∗i (t, T )
)
dt+

d∑
i=1

σi(t, T )dW̃i(t) (1.16)

and the dynamics of a zero-coupon bond becomes

dZ(t, T ) = r(t)Z(t, T )dt− Z(t, T )
d∑
i=1

σ∗i (t, T )dW̃i(t). (1.17)
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Chapter 2

Implementing the Model

Our implementation of the HJM model uses Monte Carlo to simulate (1.16). How-
ever, except for very simple cases of σ, exact simulation of (1.16) is not feasible
and one must resort to discrete approximation. We will follow Glasserman ([1],
Section 3.6.2) quite closely.

2.1 The Discrete Drift

Descrete approximation of forward rates will require discretization of both argu-
ments of f(t, T ). To simplify notation we will fix a time grid 0 = t0 < t1 <
· · · < tM for the first argument and then for each fixed time ti we use the subgrid
ti < ti+1 < · · · < tM for discretizing the second argument.

We use f̂(ti, tj) to denote the discretized forward rate for maturity tj as of time
ti, j ≥ i and Ẑ(ti, tj) to denote the corresponding discretized zero-coupon bond
price, so that

Ẑ(ti, tj) = exp
(
−

j−1∑
l=i

f̂(ti, tl)(tl+1 − tl)
)

(2.1)

To minimize discretization error, we would like the initial values of the dis-
cretized zero-coupon bonds Ẑ(0, tj) to match the exact values Z(0, tj) for all ma-
turities tj on the grid. From (1.3) and (2.1) it follows that this holds if

j−1∑
l=i

f̂(0, tl)(tl+1 − tl) =

∫ tj

0
f(0, v)dv;

that is, if

f̂(0, tl) =
1

tl+1 − tl

∫ tl+1

tl

f(0, v)dv, (2.2)

for all l = 0, 1, . . . ,M − 1. So we should initialize f̂(0, tl) to the average level of
the forward curve f(0, T ) on the interval [tl, tl+1].
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Once the initial forward rate curve has be specified, a simulation of a single-
factor model evolves according to

f̂(ti, tj) = f̂(ti−1, tj)+

µ̂(ti−1, tj)[ti − ti−1] + σ̂(ti−1, tj)
√
ti − ti−1Zi, j = i, . . . ,M, (2.3)

where Z1, . . . , ZM are independent standard normal random variables and µ̂ and
σ̂ are the discrete counterparts of the continuous-time coefficients in (1.5).

We will specify the discrete volatility σ̂ by calibrating from market data in
the next section. To choose the discrete drift µ̂ to approximate the no-arbitrage
condition

µ(t, T ) = σ(t, T )

∫ T

t
σ(t, v)dv, (2.4)

we exploit the martingale property for discounted bond prices. This property re-
quires that

Z(t, T )e−
∫ t
0 f(s,s)ds

be a martingale in t for each T . The corresponding discretized requirement is that

Ẑ(ti, tj)e
−

∑i−1
k=0 f̂(tk,tk)[tk+1−tk]

be a martingale in i for each j. This leads (see Glasserman [1] Section 3.6.2) to the
discrete version of the HJM no arbitrate condition:

µ̂(ti−1, tj)[tj+1 − tj ] =

1

2

( j∑
l=i

σ̂(ti−1, tl)[tl+1 − tl]
)2
− 1

2

( j−1∑
l=i

σ̂(ti−1, tl)[tl+1 − tl]
)2
.

The d-factor version of this condition is

µ̂(ti−1, tj)[tj+1 − tj ] =

1

2

d∑
k=1

[( j∑
l=i

σ̂k(ti−1, tl)[tl+1 − tl]
)2
−
( j−1∑
l=i

σ̂k(ti−1, tl)[tl+1 − tl]
)2]

. (2.5)

2.2 Calibrating the HJM Model

Because the diffusion process is the same in the dynamics of forward rates under
the real world measure as it is in the dynamics under the risk-free measure, we
can use historical data to estimate the diffusion, σ(t, T ), in the HJM model (1.16).
We outline informally how to do this calibration of the HJM model following the
presentation of Shreve [2] Section 10.3.6.
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Assume that σ(t, T ) is of the form

σ(t, T ) = σ̃(T − t) (2.6)

for some deterministic function σ̃(τ). We will choose σ̃(τ) to match historical
data. The forward rate evolves according to the SDE

df(t, T ) = µ(t, T )dt+ σ̃(T − t)dW (t), 0 ≤ t ≤ T.

Suppose we have observed this forward rate at times t1 < t2 < · · · < tJ < 0 in the
past and the forward rate we observed at those times was for the relative maturities
τ1 < τ2 < · · · < τK ; that is, we have observed f(tj , tj + τk) for j = 1, . . . , J
and k = 1, . . . ,K. Suppose further that for some small positive δ we have also
observed f(tj + δ, tj + τk), where δ is sufficiently small that tj + δ < tj+1 for
j = 1, . . . , J − 1 and tJ + δ < 0. According to our model,

f(tj + δ, tj + τk)− f(tj , tj + τk) ≈ δµ(tj , tj + τk) + σ̃(τk)(W (tj + δ)−W (tj)).

Let

Dj,k =
f(tj + δ, tj + τk)− f(tj , tj + τk)√

δ
(2.7)

and note that

Dj,k ≈
√
δµ(tj , tj + τk) + σ̃(τk)

W (tj + δ)−W (tj)√
δ

.

Since the first term in this equation contains
√
δ, it is small relative to the second

term. So, for

Xj =
W (tj + δ)−W (tj)√

δ
, j = 1, . . . , J, (2.8)

which is a standard normal random variable. we have

Dj,k ≈ σ̃(τk)Xj . (2.9)

But the X1, . . . , XJ are not only standard normal random variables, they are also
independent. This means we can regard D1,k, . . . , DJ,k as independent observa-
tions taken at times t1, . . . , tJ on forward rates, all with the same relative maturity
τk. The empirical covariance is

Ck1,k2 =
1

J

J∑
j=1

Dj,k1Dj,k2 .

The theoretical covariance, computed from the right-hand side of (2.9), is

E[σ̃(τk1)σ̃(τk2)X2
j ] = σ̃(τk1)σ̃(τk2).
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We would like to find σ̃(τ1), . . . , σ̃(τK) so that

Ck1,k2 = σ̃(τk1)σ̃(τk2), k1, k2 = 1, 2, . . . ,K. (2.10)

But this is (because of symmetry) 1
2K(K + 1) equations and only K unknowns.

To determine a best choice of σ̃(τ1), . . . , σ̃(τK), we use principal component
analysis. Let

D =


D11 D12 . . . D1K

D21 D22 . . . D2K
...

...
. . .

...
DJ1 DJ2 . . . DJK


Then the empirical covariance matrix

C =


C11 C12 . . . C1K

C21 C22 . . . C2K
...

...
. . .

...
CK1 CK2 . . . CKK

 =
1

J
DTD

is symmetric and positive semidefinite and so has a principal component decom-
position

C = λ1e1e
T
1 + λ2e2e

T
1 + · · ·+ λKeKe

T
K ,

where λ1 ≥ λ2 ≥ · · · ≥ λK ≥ 0 are the eigenvalues of C and the column vectors
e1, e2, . . . , eK are the orthonormal eigenvectors.

As noted above, we would like to find σ̃(τ1), . . . , σ̃(τK) so that

C =


σ̃(τ1)
σ̃(τ2)

...
σ̃(τK)

 [σ̃(τ1) σ̃(τ2) . . . σ̃(τK)
]

but this may not be possible to do exactly. The best approximation is
σ̃(τ1)
σ̃(τ2)

...
σ̃(τK)

 =
√
λ1e1.

If there are d Brownian motions driving the SDE modeling forward rates, then each
component has its own σ̃ vector and the best approximation for them is given by√

λ1e1, . . . ,
√
λded.
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2.3 The Pricing Algorithm

Once the volatility σ̂ has been calibrated from market data and the discrete form
of the drift has been identified, specifying the details of the HJM pricing algorithm
is mostly about keeping track of indices. The description below of the pricing
algorithm follows Glasserman [1], Section 3.6.3, very closely.

In implementing the simulation, we are not interested in keeping track of an
M ×M matrix of rates as the notation f̂(ti, tj) might suggest. At each step, we
need only the vector of current rates. Recall that our time and maturity grid consists
of the set of dates 0 = t0 < t1 < · · · < tM , where tM = T ∗ is our time hori-
zon, so tM is the maturity of the longest-maturity bond represented in the model.
This means that the last forward rate relevant to the model applies to the interval
[tM−1, tM ], the forward rate with maturity argument tM−1. Thus, our initial vector
of forward rates consists of the M components f̂(0, 0), f̂(0, t1), . . . , f̂(0, tM−1).
These values will be set by (2.2):

f̂(0, tl) =
1

tl+1 − tl

∫ tl+1

tl

f(0, v)dv.

As the simulation evolves, the number of relevant rates decreases: at time ti we
are only interested in the rates f̂(ti, ti), f̂(ti, ti+1), . . . , f̂(ti, tM−1). We represent
these M − i rates remaining at time ti as the vector (f1, . . . , fM−i). Thus we are
indexing forward rates by relative maturity, as done in the Musiela parametrization.

Similar notational conventions will be used for µ̂(ti, tj) and σ̂k(ti, tj), k =
1, . . . , d: we use mj for µ̂ and sj(k) for σ̂k. Thus the simulation step from ti−1 to
ti becomes

fj ← fj+1 +mj [ti − ti−1] +
d∑

k=1

sj(k)
√
ti − ti−1Zik, j = 1, . . . ,M − i,

where
mj = µ̂(ti−1, ti+j−1), sj(k) = σ̂k(ti−1, ti+j−1). (2.11)

Our implementation of the HJM simulation is broken into to main parts: one
calculating the discrete drift parameter at a fixed time step and the other looping
over time steps and updating the forward curve at each step.

Calculating the discrete drift parameter amounts to evaluating

µ̂(ti−1, ti+j−1) =
1

2hj

[ d∑
k=1

( j∑
l=i

σ̂k(ti−1, tl)hl+1

)2
−

d∑
k=1

( j−1∑
l=i

σ̂k(ti−1, tl)hl+1

)2]
.

Algorithm 2.3.1 achieves this in a way that avoids duplicate computation. In the
notation of the algorithm, the drift parameter is evaluated as

1

2(tj+1 − tj)
[Bnext −Bprev],
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and each Anext(k) records the quantity

j∑
l=i

σ̂k(ti−1, tl)hl+1.

The inputs are the volatilities s = {sj(k) : j = 1, . . . ,M − i, k = 1, . . . , d}, the
intervals h = {hl : l = 1, . . . ,M} (where hl = tl − tl−1), and the step index i.

Algorithm 2.3.1: UPDATEDRIFT(s,h, i)

Aprev(k)← 0, k = 1, . . . , d;
for j ← 1 to M − i

do



Bnext ← 0;
for k ← 1 to d

do


Anext(k)← Aprev(k) + sj(k)× hi+j ;
Bnext ← Bnext +Anext(k)×Anext(k);
Aprev(k)← Anext(k);

mj ← (Bnext −Bprev)/(2hi+j);
Bprev ← Bnext;

return (m1, . . . ,mM−i)

Algorithm 2.3.2 implements a single replication of the pricing procedure in an
HJM simulation, which is repeated many times to estimate a product price. This
algorithm calls 2.3.1 to calculate the discrete drift for all remaining maturities at
each time step. The key step in the algorithm used to value interest rate derivatives
is

P ← cashflow at ti,

where, of course, the particular instrument determining the cashflow at ti must
be provided as input. The remaining inputs are the initial curve f = {fl : l =
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1, . . . ,M} and the intervals h = {hl : l = 1, . . . ,M}.

Algorithm 2.3.2: PRESENTVALUE(f ,h, product)

D ← 1;P ← 0;C ← 0;
for i← 1 to M − 1

do



D ← D × e−f1×hi ;
for j ← 1 to M − i

do
{

for k ← 1 to d : sj(k)← σ̂k(ti−1, ti+j−1);
(m1, . . . ,mM−i)← driftParameters(s,h, i);

generate Z1, . . . , Zd ∼ N (0, 1);
for j ← 1 to M − i

do


S ← 0;
for k ← 1 to d : S ← S + sj(k)× Zk;
fj ← fj+1 +mj ∗ hi + S ×

√
hi;

P ← cashflow at ti(depending on the instrument);
C ← C +D × P ;

return (C)
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Chapter 3

Numerical Results

In this chapter we describe the results of applying our implementation of the HJM
model to pricing some simple fixed-income products, including zero-coupon bonds,
caps and floors.

3.1 Zero-Coupon Bonds

There is no reason to use HJM simulation to price bonds: the simulation will simply
return prices that could have been computed from the initial forward curve, using
the formula:

Z(0, tj) ≈ Ẑ(0, tj) = e−
∑j−1

l=0 f̂(0,tl)(tl+1−tl).

However, this provides one way to test the implementation. The connection be-
tween the simulated approximation to zero-coupon prices and true prices can be
made precise as follows. Consider a simulating path f̂ . From this we can extract
discretized short rates:

r̂(t0) = f̂(t0, t0), r̂(t1) = f̂(t1, t1), . . . , r̂(tM ) = f̂(tM , tM ).

From these we can calculate a discount factor

D̂(tj) = e−
∑j−1

l=0 r̂(tl)(tl+1−tl) (3.1)

for each maturity tj . Imagine repeating this over n independent paths and let
D̂(1)(tj), . . . , D̂

(n)(tj) denote discount factors calculated over the n paths. It fol-
lows from the strong law of large numbers, the martingale property and (2.2), that,
almost surely,

1

n

n∑
i=1

D̂(i)(tj)→ E(D̂(tj)) = Ẑ(0, tj).

This means that if we use our simulation to price a bond, then the results should
converge to the value to which the model was initially calibrated. The table below
compares simulated and “analytic” prices for several zero-coupon bonds with face
value of $1.00. All results agree to within about 1 cent.
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Maturity Z(0, T ) Analytic Z(0, T ) Simulated
1 Month 0.9996 0.9996

1 Quarter 0.9987 0.9987

1 Year 0.9941 0.9941

2 Year 0.9832 0.9831

5 Year 0.9034 0.9022

10 Year 0.7077 0.6968

3.2 Caps

A caplet is an interest rate derivative providing protection against an increase in
an interest rate for a single period. A cap is a portfolio of caplets covering mul-
tiple periods. The caplet is like a call option on the short rate, having a payoff of
the form (r(T ) − R)+ for maturity T and fixed rate R. The underlying rate in a
caplet applies over and interval and is based on discrete compounding. To sim-
plify the implementation, we will assume the interval has the form [ti, ti+1]. At ti.
the continuously compounded rate for this interval is f̂(ti, ti); the corresponding
discretely compounded rate F̂ satisfies

1

1 + F̂ (ti)[ti+1 − ti]
= e−f̂(ti,ti)[ti+1−ti];

so that,

F̂ (ti) =
1

ti+1 − ti

(
e−f̂(ti,ti)[ti+1−ti] − 1

)
.

The payoff of the caplet would then be (F̂ (ti) − R)+ (times the principal). The
payment is made at the end of the interval, ti+1, and so must be discounted back to
ti, which (using the notation of Algorithm 2.3.2) leads to

P ← e−f1hi+1

( 1

hi+1
(ef1hi+1 − 1)−R

)+
.

Some cap prices computed using our implementation are given below. These
all have tenor one quarter and interest rate 0.4%. We use such a small fixed rate
because the data we use to calibrate the model has very low forward rates early on
in the most recent period.

Maturity Simulated Cap Price
1 Quarter 0.0012

6 Month 0.0029

1 Year 0.0085

5 Year 0.3438

10 Year 1.1687

Evaluating floors in the HJM model is a trivial modification of the methods
used for caps so we omit any discussion of them.
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Appendix A

Using the Software

Our implementation of the HJM model is done in Java 6 and distributed as a jar
archive named CQF-HJM.jar. The jar file is available in the directory HJM on
the included CD. That directory contains a subdirectory lib which contains Java
libraries required by the application. The main source code is also included on the
CD in a subdirectory of HJM called src. Additional source code used by the HJM
application but not specific to that project is included on the CD in a separate folder
call CQF.

A.1 Using the Java Application

To start the application, right click on the archive CQF-HJM.jar and choose Open
with Java 6 Runtime.1

Figure A.1: HJM Main Application Frame

1This assumes you have Java 6 installed on your machine. If this is not the case, it can be obtained
from Oracle at http://www.java.com/en/download/index.jsp.
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When the application is launched, a main panel is displayed as shown in Fig-
ure A.1. The two panels on the left side of the main frame allow you to specify
the properties of the fixed-income product you would like to price, the number
of factors you want in the HJM model, the number of steps to run in the Monte
Carlo simulation and which random engine you would like to use in the simula-
tion. After setting the specifications, click the Price button at the bottom left of
the main frame. When the calibration and simulation are complete, the price will
be shown in the top right subpanel and the tabs of the panel on the bottom right
show visualizations of the distribution of approximations to the price during the
simulation, the convergence of these approximations and the principal components
of the model. The model parameters are also shown in one of the tabs. Examples
of these visualizations are show below. To quit the application, close the window.

Figure A.2: HJM Distribution Visualization

Figure A.3: HJM Convergence Visualization
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Figure A.4: HJM Parameters Table

Figure A.5: HJM PCA Visualization
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